https://www.halvorsen.blog

YA @
,A‘é\a' S
%© ¢
'AV\ -----

" 1 ‘e@;*

Raspberry Pi Pico

12C Communication using TC74 Temperature Sensor

Hans-Petter Halvorsen



Contents

ntroduction
Raspberry Pi Pico
2C Communication

TC74 Temperature Sensor
with 12C Interface

— Python Examples using MicroPython and
TC74

— Datalogging and Data Analysis Examples




https://www.halvorsen.blog c

Introduction

Hans-Petter Halvorsen Table of Contents




Introduction

* |n this Tutorial we will use a Raspberry
Pi Pico and 12C Communication

* We will exemplify using a TC74
Temperature Sensor with [2C Interface

* We will use the Thonny Python Editor
and MicroPython



o

What do you need?

wcroch

Raspberry Pi Pico
A Micro-USB cable

A PC with Thonny Python Editor (or another
Python Editor)

Breadboard

Electronics Components like LED, Resistors,
Jumper wires, etc.

12C Sensor, we will use a TC74 Temperature
Sensor with 12C Interface in this Tutorial



https://www.halvorsen.blog

Y$°

%, ©

Raspberry Pi Pico

a

Hans-Petter Halvorsen Table of Contents




Raspberry Pi Pico

e Raspberry Pi Pico is a microcontroller board
developed by the Raspberry Pi Foundation

* Raspberry Pi Pico has similar features as Arduino
devices

e Raspberry Pi Pico is typically used for Electronics
projects, loT Applications, etc.

* You typically use MicroPython, which is a

downscaled version of Python, in order to program it

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico



https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

Pico Pinout

Power

Ground

UART / UART (default)
GPIOQ, PIO, and PWM
ADC

SPI / SPI (default)
12C / 12C (default)

Debugging

[ UARTO TX J 12C0SDA | sPioRx § GPO_ I
2
| GND_ K

[ 12C1SDA | spiosck B GP2 Q¥

[ 12c1scL | spioTx | GP3 JH

LUART1 TX | 12C0 SDA | SPIORX | GP4 JI
[UART1 RX | 12c0scL | spiocsn | GPS V]
[ oND B

[ 1201 SDA | spiosck | GP6_ R

[ 12ciscL | spioTx B GP7 (1

[UART1 TX J 12COSDA | spi1Rx | GP8 Rl
[ UART1 RX § 12C0SCL § SPI1Csn §  GP9  JiF)
| GND_ JRE]

[ 12C1SDA | spi1sck | GP10_ BT

[ 12ciscL | spiiTx | GP11JH

[UARTO TX J 12C0SDA [ spiiRx | GP12 )
[ UARTORX § 12c0scL § spi1csn § GP13 RV
| GND__[RE]

[ 12¢1 SDA | spi1sck B GP14 D)

[ 12c1scL | spiiTx | GP15  BU

https://www.raspberrypi.com/products/raspberry-pi-pico/

(§2d9) a3

NTOMS

aNO

L vBuS |

3 IS

£l GND |

37

£ 3va(our) |

35

24 GP28 ] ADC2 |

8 GND | AGND |

4 627 | Aoct | i2ciscl |
KR GP26 § ADCO § 12C1 SDA |
30

(If  GP22 |

i GND |

o GP21 |
] GP20 |
P8 GP19 ] spio Tx_J 121 SCL |
28 GP18 | SPi0 SCK § 12C1 SDA |
(<] GND |

22 Y 12C0 SCL _§ UARTO RX
ViR GP16 § SPIORX § 12C0 SDA § UARTO TX


https://www.raspberrypi.com/products/raspberry-pi-pico/

Thonny

T

File Edit View Run Tools Help
(B =) (>

Files

This computer

C:\ Temp \ Raspberry Pi Pico
@) LED Example.py
& picosensor.py
& ReadTemp.py

Raspberry Pi Pico
& TemperatureSensor. py
& thermistor_ex2.py

@-

LED Example.py

Shell

import machine
import time

16
machine.Pin(pin, machine.Ff

pin
led

while True:
led.value(1)
time.sleep(2)
led.value(®)
time.sleep(2)

Thonny is a simple and user-friendly
Python Editor

Cross-platform: Windows, macOS and
Linux

Built-in support for the Raspberry Pi Pico
hardware/MicroPython firmware

Its free
Download: https://thonny.org

>>> print("Hello World")

Hello World

>>>

MicroPython (Raspberry Pi Pico) « COMS8



https://thonny.org/

MicroPython

* MicroPython is a downscaled version of Python

* |tis typically used for Microcontrollers and
constrained systems (low memory, etc.)

 Examples of such Microcontrollers that have
tailormade MicroPython firmware are Raspberry
Pi Pico and Micro:bit

* https://micropython.org

* https://docs.micropython.org/en/latest/



https://micropython.org/
https://docs.micropython.org/en/latest/

MicroPython Firmware

* The first time you need to install the
MicroPython Firmware on your
Raspberry Pi Pico

* You can install the MicroPython
Firmware manually or you can use
the Thonny Editor



Install MicroPython Firmware using Thonny

T& Thonny - <untitled> @ 1:1

File Edit View Run Tools Help

DEEH OF @™
<untitled>

1

Shell
Python 3.106.9 (C:\Users\hansha\AppData\Local\Programs\Thonny\pyth

V]

on.exe)

>>>

¥ Local Python 3 « Thonny's Python

Conjgure interpreter...

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

'ﬁ. Thonny options
General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant

Which kind of interpreter should Thonny use for running your code?
|MicroPython (Raspberry Pi Pico)

Details

Connect your device to the computer and select corresponding port below
(look for your device name, "USB Serial" or "UART").
If you can't find it, you may need to install proper USB driver first.

Port
|< Try to detect port automatically >

M Interrupt working program on connect
Synchronize device's real time clock

M Use local time in real time clock

[V Restart interpreter before running a script

=

Install or update MicroPython

: Cancel



https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

https://www.halvorsen.blog c

|12C Communication

Inter-Integrated Circuit (12C)

Hans-Petter Halvorsen Table of Contents




12C

With the 12C protocol you can communicate using just
two wires, a clock and data line (+ Power and GND)

Typically you use 12C to talk to devices like sensors, small
displays, PWM or motor drivers, and other devices.

The Sensor you want to communicate with needs to
support the 12C protocol

There exist thousands of different Sensors, etc. that
support the 12C Protocol

Most Microcontrollers today supports 12C
Communication



12C

12C is a multi-drop bus
2-Wire Protocol: SCL (Clock) + SDA (Data)

Multiple devices can be connected to the 12C
pins on the Raspberry Pi Pico

Each device has its own unique 12C address



12C

Multiple devices can be connected to the 12C pins on the Arduino
Master — Device that generates the clock and initiates communication with slaves
Slave — Device that receives the clock and responds when addressed by the master.

Microcontroller

ADC, DAC, Sensor, etc. with 12C Interface



| 12co spa | Gpo
| 12coscL | Gp1
I Ground
| 12c1spA | GP2
| 12c1scL | ap3
| 12co spa | Gpa
| 12coscL | aps
I Ground
| 12c1spA | Gpe
| r2ciscL | Gp7
| 12co spa | cps
| 12coscL | apo
I Ground
| 12c1spA | Gp10
| r2c1scL | Gp11
| 12co spa | Gp12
| 12coscL | Gp13
I Ground
| 12c1spA | GP14
| 12c1scL | Gpis

(=

O 0O N OO A W N

19
20

12C with Pico

VBUS
VSYS
Ground
3V3 EN
3V3 (Out)

GP28
Ground
GP27
GP26
RUN
GP22
Ground
GP21
GP20
GP19
GP18
Ground
GP17
GP16

[

[

| r2coscu |
| 12cospa |
| 2cisc |
| 12c1spA |
[

[

[

12co scL |
12€0 SDA |

Raspberry Pi Pico has 2 12C
Controllers (0 and 1).

You can access these 12C
controllers through most of the
GPIO pins of Raspberry Pi Pico.
So, you should configure

in software (your MicroPython
program) which GPIO pins you
want to use with a specific 12C
controller.



12C with Pico

from machine import I2C
Initialize 12C Communication:  Raspberry Pi Pico has 2 12C Controllers/Interfaces (0 and 1)
i2c = I2C(i2c_interface, scl=sclpin, sda=sdapin, freg=100000)

“freq” should be an integer which sets the maximum frequency for SCL

Read Data from the connected 12C device:

data = i2c.readfrom(address, n, True)

Read n bytes from the peripheral specified by address. If True is set, then a STOP condition
is generated at the end of the transfer. The function returns a bytes object with the data.

Many other 12C functions do exist, see documentation :
https://docs.micropython.org/en/latest/library/machine.l2C.html



https://docs.micropython.org/en/latest/library/machine.I2C.html

Python — Scan for 12C Devices

from machine import Pin, I2C
12c_interface = 0

sdapin = Pin (16)
sclpin = Pin(17)

i2c = I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=100000)
i2cdevices = i2c.scan()

print (12cdevices)



https://www.halvorsen.blog c

TC74 Temperature Sensor
with 12C Interface

Hans-Petter Halvorsen Table of Contents




TC74 Temperature Sensor

O

TC74
12345
Make sure to buy the
breadboard friendly TO-220
package version of the sensor JuUuUuU U
oL dah'da
ZOZ AN
nOYP>

Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf



https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

TC74 Temperature Sensor

SMBus/12C Interface

TC74A0-5.0VAT

O

TC74
12345

O
pa

VDD¢

5
Z
o

SDA
SCLK«¢

The TC74 acquires and converts temperature
information from its onboard solid-state
sensor with a Resolution of 1°C (no decimal
values, only 24°C, 25 °C, 26 °C, etc.).
Accuracy is about +2°C

It stores the data in an internal register
which is then read through the serial port.
The system interface is a slave SMBus/12C
port, through which temperature data can
be read at any time.

Device Address: 0x48

Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf



https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

| 12co spa
| 12co scL

| 12c1 spA
| 12c1scL
| 12co spa
| 12co scL

| 12c1 spa
| 12c1 scL
| 12co spa
| 12co scL

| 12c1 spa
| 12c1 scL
| 12co spa
| 12co scL

| 12c1 spA
| 12c1 scL

| ro

| ep1

I Ground
| p2

| p3

| pa

| Gps

I Ground
| crs

| p7

| rs

| po

I Ground
| er10

| ep11

| epP12

| ep13

I Ground
| G4

| ep1s

19
20

TC74 Wiring Example

SDA - Serial Data — Bidirectional

veus | SCLK/SCL - Serial Clock Input
vsys | VDD — Power Supply Input (+3.3v)
Ground | GND - Ground

SR NC - Not in use (Not Connected)

3V3 (Out)

12c1 scL |
GP26 12C1 SDA |

l

|

| 2coscu |
Gp20 | 12cospa |

| 2cisc |

| 12c1spa |

|

O

TC74

12345

\-rs'gﬁf
GND <
3

*7
Gr17 | rcosct | /

GP16 | 12c0 spA jo—




https://www.halvorsen.blog

Python Examples using
MicroPython and TC74

Hans-Petter Halvorsen Table of Contents




Pyt h on Basic Example reading a

Temperature Value from the

. . . TC74 Temperature Sensor
from machine import Pin, I2C &

12c interface = 0
sdapin = Pin(16)
sclpin = Pin(17)

i2c =I2C(i2c_interface, scl=sclpin, sda=sdapin,
freg=100000)

tc74address = 0x48
data = i2c.readfrom(tc74address, 1, True)

print (data)

temp = int.from bytes(data, "big")
print (temp)



Pyt h on Basic Example reading a

Temperature Value from the
from machine import Pin, I2C TC74 Temperature Sensor

12c _interface = 0
sdapin = Pin (16)
sclpin = Pin(17)

i2c =I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=100000)

tc74address = 0x48
data = i2c.readfrom(tc74address, 1, True)
print (data) # Data received is a byte object

# Converting to int. Resolution for TC74 Sensor is 1°C
# byteorder is big where MSB is at start

temp = int.from bytes(data, "big")

print (temp)



Code Explanations

data = i2c.readfrom(tc74address, 1, True) Terr.\perature data !S
available as an 8-bit
digital word.

We need to convert the data from a byte array to an &

Integer value. Resolution for TC74 Sensor is 1°C,
meaning there is no decimal values only 24°C, 25 °C, 26
°C, etc.

temp = int.from bytes(data, "big")

The byteorder argument determines the byte order used to represent
the integer. If byteorder is "big", the most significant byte is at the
beginning of the byte array. If byteorder is "little", the most
significant byte is at the end of the byte array




T& Thonny - C:\Users\hansha\OneDrive\Documents\Industrial IT and Automation\loT\Raspberry Pi Pico\Code Examples\i2c_tc74.py @ 1:29 - O X
File Edit View Run Tools Help

D& o @ ™

i2c_scan.py © i2c_tc74.py

1 from machine import Pin, I2C
2
3 1i2c_interface = ©
4
5 sdapin = Pin(16)
6 sclpin = Pin(17)
7
& 12c =I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=100000)
S
16 tc74address = 0x48
11
12 data = i2c.readfrom(tc74address, 1, True)
13 print(data)
14
15
16
17 temp = int.from_bytes(data, "big")
18 print(temp)
Shell
>>>
b'\xla'
26
. . . O
>>> The Temperature in this case is 26°C

MicroPython (Raspberry Pi Pico) «+ COM6




from machine import Pin, IZ2ZC
from time import sleep

i2c_interface = 0

sdapin = Pin(16)
sclpin = Pin(17)

12c = I2C(12c_interface, scl=sclpin,

freg=100000)
tc/74address = 0x48

while True:

data = i12c.readfrom(tc/74address, 1,

temp = int.from bytes (data,

print
sleep

temp)

(
(2)

"big")

True)

|

Continues
Reading Example

|

sda=sdapin,



Tk Thonny - C:\Users\hansha\OneDrive\Documents\Industrial IT and Automation\loT\Raspberry Pi Pico\Code Examples\i2c_tc74v2.py @ 10:1 - [m] X
File Edit View Run Tools Help
Q= () @ =
i2c_scan.py ©  i2ctc74.py ©  i2c_tc74v2.py
1 from machine import Pin, I2C
2 from time import sleep
3
4 1i2c_interface = ©
5
6 sdapin = Pin(16)
7 sclpin = Pin(17)
8
S 1i2c =I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=10060600)
10
11 tc74address = 06x48
12
13 while True:
14 data = i2c.readfrom(tc74address, 1, True)
15 temp = int.from_bytes(data, "big")
16 print(temp)
17 sleep(5)
Shell
>>> - EC 0 :
27
27
27
28
29
27
27
28
27
28
27
28
28
MicroPython (Raspberry Pi Pico) « COM6




Improved Example

Let's make a separate Python Module with a Class and a Function that handles all the
logic regarding reading Temperature Data from the TC74 Temperature Sensor

from machine import Pin, I2C Sensor py
class TC74:
def init (self, interface, sda, scl):
sdapin = Pin(sda)
sclpin = Pin(scl)

self.i12c = I2C(interface, scl=sclpin, sda=sdapin, freg=100000)

def ReadTemperature (self) :
tc74address = 0x48
data = self.i2c.readfrom(tc74address, 1, True)
temp = int.from bytes (data, "big")
return temp



Main Program

from Sensor import TC74
from time 1import sleep

# Initialization

i2c_interface = 0

sdapin = 16; sclpin = 17

sensor = TC74(i2c_interface, sdapin, sclpin)

while True:
temp = sensor.ReadTemperature ()
print (temp, "°C")
sleep (D)



https://www.halvorsen.blog c

Datalogging and Data
Analysis Examples

Hans-Petter Halvorsen Table of Contents




Datalogging

We will read data from a Temperature Sensor
using

We will then Log Temperature Data on a File on
the Pico Device

Then we will copy the File to our PC and are then
ready to do some Data Analysis

Finally, we will create a simple Python Script that
opens the File and Plot the Data. Here we will
use ordinary Python and the matplotlib




from machine import Pin, I2C
from time import sleep

#I2C Initialization

tc74address = 0x48

i2c_interface = 0

sdapin = Pin(16); sclpin = Pin(17)

i2c =I2C(i2c_interface, scl=sclpin, sda=sdapin, freg=100000)

# Open File
file = open("tempdata.txt", "w")

# Write Data to File Function

def writefiledata(t, x):
time = str(t)
value = str(round(x, 2))
file.write(time + "\t" + value)
file.write("\n")

k =0
Ts = 5
while True:
data = i2c.readfrom(tc74address, 1, True)
temp = int.from bytes(data, "big")
print (temp)
writefiledata (k*Ts, temp)
k =k + 1

sleep (Ts)



T& Thonny - Raspberry Pi Pico :: /tempdatatxt @ 6:6 = O X
File Edit View Run Tools Help

DEd O c ™
Files i2c_tc74_datalogging.py [ tempdata.txt ] *
This computer = A ) 27
C= \ U:;r;;.h:sha N - 58
e . 3 18 26
Raspberry Pi Pico = 4 15 26
i 5 20 27
2 lib
=) tempdata.txt & 25 28
Shell
>>> %Run -c $EDITOR_CONTENT
217
28
26
26
27
28

Traceback (most recent call last):
File "<stdin>", line 29, in <module>
ReyboardInterrupt:
MicroPython v1.19.1 on 2022-06-18; Raspberry Pi Pico with RP2046

Type "help()" for more information.

>>>

MicroPython (Raspberry Pi Pico) + COM6




Data Analysis

* The File is now copied to our PC and we
are then ready to do some Data Analysis

* We will create a simple Python Script
that opens the File and Plot the Data.
Here we will use ordinary Python and the
matplotlib



import matplotlib.pyplot as plt

# Open File

f = open ("tempdata.txt", "r")

# Transform File Data into x Array and y Array that can be used for plotting
x =[]

y = []

k =0

for record in f:
record = record.replace("\n", "")
record = record.split("\t")
X .append (int (record[0]))
y.append (int (record[1]))
k=k+1

f.close ()

plt.plot(x,y, '-0o')

plt.title('Temperature Data from TC74 Sensor')
plt.xlabel ('Time[s]"'")

plt.ylabel ('Temperature[°C]")

plt.grid()

plt.show ()



. Figure 1

A€ Q=B

Temperature Data from TC74 Sensor

29.0 -

28.5 -

28.0 -

27.5

Temperature[°C]

26.5

26.0 -

10

T T

20 30
Time[s]

40




Raspberry Pi Pico Resources
* Raspberry Pi Pico:

https://www.raspberrypi.com/products/raspberry-pi-pico/

* Raspberry Pi Foundation:

https://projects.raspberrypi.org/en/projects?hardware[]=pico

e Getting Started with Pico:

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

* MicroPython:

https://docs.micropython.org/en/latest/index.html



https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects?hardware%5b%5d=pico
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico
https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

University of South-Eastern Norway

WWW.uUusn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog



http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

