
Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico
I2C Communication using TC74 Temperature Sensor

• Introduction
• Raspberry Pi Pico
• I2C Communication
• TC74 Temperature Sensor

with I2C Interface
– Python Examples using MicroPython and

TC74
–Datalogging and Data Analysis Examples

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

• In this Tutorial we will use a Raspberry
Pi Pico and I2C Communication
• We will exemplify using a TC74

Temperature Sensor with I2C Interface
• We will use the Thonny Python Editor

and MicroPython

Introduction

• Raspberry Pi Pico
• A Micro-USB cable
• A PC with Thonny Python Editor (or another

Python Editor)
• Breadboard
• Electronics Components like LED, Resistors,

Jumper wires, etc.
• I2C Sensor, we will use a TC74 Temperature

Sensor with I2C Interface in this Tutorial

What do you need?

Hans-Petter Halvorsen

https://www.halvorsen.blog

Raspberry Pi Pico

Table of Contents

• Raspberry Pi Pico is a microcontroller board
developed by the Raspberry Pi Foundation

• Raspberry Pi Pico has similar features as Arduino
devices

• Raspberry Pi Pico is typically used for Electronics
projects, IoT Applications, etc.

• You typically use MicroPython, which is a
downscaled version of Python, in order to program it

Raspberry Pi Pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1

Pi
co

 P
in

ou
t

https://www.raspberrypi.com/products/raspberry-pi-pico/

https://www.raspberrypi.com/products/raspberry-pi-pico/

Thonny
• Thonny is a simple and user-friendly

Python Editor
• Cross-platform: Windows, macOS and

Linux
• Built-in support for the Raspberry Pi Pico

hardware/MicroPython firmware
• Its free
• Download: https://thonny.org

https://thonny.org/

• MicroPython is a downscaled version of Python
• It is typically used for Microcontrollers and

constrained systems (low memory, etc.)
• Examples of such Microcontrollers that have

tailormade MicroPython firmware are Raspberry
Pi Pico and Micro:bit

• https://micropython.org
• https://docs.micropython.org/en/latest/

MicroPython

https://micropython.org/
https://docs.micropython.org/en/latest/

• The first time you need to install the
MicroPython Firmware on your
Raspberry Pi Pico
• You can install the MicroPython

Firmware manually or you can use
the Thonny Editor

MicroPython Firmware

Install MicroPython Firmware using Thonny

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

Hans-Petter Halvorsen

https://www.halvorsen.blog

I2C Communication

Table of Contents

Inter-Integrated Circuit (I2C)

I2C
• With the I2C protocol you can communicate using just

two wires, a clock and data line (+ Power and GND)
• Typically you use I2C to talk to devices like sensors, small

displays, PWM or motor drivers, and other devices.
• The Sensor you want to communicate with needs to

support the I2C protocol
• There exist thousands of different Sensors, etc. that

support the I2C Protocol
• Most Microcontrollers today supports I2C

Communication

I2C
• I2C is a multi-drop bus
• 2-Wire Protocol: SCL (Clock) + SDA (Data)
• Multiple devices can be connected to the I2C

pins on the Raspberry Pi Pico
• Each device has its own unique I2C address

I2C

SDA
SCLI2C Master

I2C Slave

Microcontroller

ADC, DAC, Sensor, etc. with I2C Interface

Multiple devices can be connected to the I2C pins on the Arduino
Master – Device that generates the clock and initiates communication with slaves
Slave – Device that receives the clock and responds when addressed by the master.

I2C Slave

…

SDA
SCL

SDA
SCL

I2C with Pico
• Raspberry Pi Pico has 2 I2C

Controllers (0 and 1).
• You can access these I2C

controllers through most of the
GPIO pins of Raspberry Pi Pico.

• So, you should configure
in software (your MicroPython
program) which GPIO pins you
want to use with a specific I2C
controller.

I2C with Pico

i2c = I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=100000)

data = i2c.readfrom(address, n, True)

Initialize I2C Communication:

Read Data from the connected I2C device:

https://docs.micropython.org/en/latest/library/machine.I2C.html

from machine import I2C

Many other I2C functions do exist, see documentation :

Read n bytes from the peripheral specified by address. If True is set, then a STOP condition
is generated at the end of the transfer. The function returns a bytes object with the data.

Raspberry Pi Pico has 2 I2C Controllers/Interfaces (0 and 1)

“freq” should be an integer which sets the maximum frequency for SCL

https://docs.micropython.org/en/latest/library/machine.I2C.html

Python – Scan for I2C Devices
from machine import Pin, I2C

i2c_interface = 0

sdapin = Pin(16)
sclpin = Pin(17)

i2c = I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=100000)

i2cdevices = i2c.scan()

print(i2cdevices)

TC74 Temperature Sensor
with I2C Interface

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

TC74 Temperature Sensor

Make sure to buy the
breadboard friendly TO-220
package version of the sensor

Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

TC74 Temperature Sensor
TC74A0-5.0VAT

Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

SMBus/I2C Interface

• The TC74 acquires and converts temperature
information from its onboard solid-state
sensor with a Resolution of 1°C (no decimal
values, only 24°C, 25 °C, 26 °C, etc.).

• Accuracy is about ±2°C
• It stores the data in an internal register

which is then read through the serial port.
• The system interface is a slave SMBus/I2C

port, through which temperature data can
be read at any time.

• Device Address: 0x48

https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

TC74 Wiring Example
SDA - Serial Data – Bidirectional
SCLK/SCL - Serial Clock Input
VDD – Power Supply Input (+3.3v)
GND – Ground
NC - Not in use (Not Connected)

Python Examples using
MicroPython and TC74

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Python
from machine import Pin, I2C

i2c_interface = 0
sdapin = Pin(16)
sclpin = Pin(17)

i2c =I2C(i2c_interface, scl=sclpin, sda=sdapin,
freq=100000)

tc74address = 0x48
data = i2c.readfrom(tc74address, 1, True)
print(data)

temp = int.from_bytes(data, "big")
print(temp)

Basic Example reading a
Temperature Value from the

TC74 Temperature Sensor

Python
from machine import Pin, I2C

i2c_interface = 0
sdapin = Pin(16)
sclpin = Pin(17)

i2c =I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=100000)

tc74address = 0x48
data = i2c.readfrom(tc74address, 1, True)
print(data) # Data received is a byte object

Converting to int. Resolution for TC74 Sensor is 1°C
byteorder is big where MSB is at start
temp = int.from_bytes(data, "big")
print(temp)

Basic Example reading a
Temperature Value from the

TC74 Temperature Sensor

Code Explanations

temp = int.from_bytes(data, "big")

The byteorder argument determines the byte order used to represent
the integer. If byteorder is "big", the most significant byte is at the
beginning of the byte array. If byteorder is "little", the most
significant byte is at the end of the byte array

We need to convert the data from a byte array to an
Integer value. Resolution for TC74 Sensor is 1°C,
meaning there is no decimal values only 24°C, 25 °C, 26
°C, etc.

Temperature data is
available as an 8-bit
digital word.

..
data = i2c.readfrom(tc74address, 1, True)

Thonny

The Temperature in this case is 26℃

Python
from machine import Pin, I2C
from time import sleep

i2c_interface = 0

sdapin = Pin(16)
sclpin = Pin(17)

i2c = I2C(i2c_interface, scl=sclpin, sda=sdapin,
freq=100000)

tc74address = 0x48

while True:
data = i2c.readfrom(tc74address, 1, True)
temp = int.from_bytes(data, "big")
print(temp)
sleep(5)

Continues
Reading Example

Improved Example

from machine import Pin, I2C

class TC74:
def __init__(self, interface, sda, scl):

sdapin = Pin(sda)
sclpin = Pin(scl)
self.i2c = I2C(interface, scl=sclpin, sda=sdapin, freq=100000)

def ReadTemperature(self):
tc74address = 0x48
data = self.i2c.readfrom(tc74address, 1, True)
temp = int.from_bytes(data, "big")
return temp

Let's make a separate Python Module with a Class and a Function that handles all the
logic regarding reading Temperature Data from the TC74 Temperature Sensor

Sensor.py

Main Program

from Sensor import TC74
from time import sleep

Initialization
i2c_interface = 0
sdapin = 16; sclpin = 17
sensor = TC74(i2c_interface, sdapin, sclpin)

while True:
temp = sensor.ReadTemperature()
print(temp, "°C")
sleep(5)

Datalogging and Data
Analysis Examples

Hans-Petter Halvorsen

https://www.halvorsen.blog

Table of Contents

Datalogging

• We will read data from a Temperature Sensor
using

• We will then Log Temperature Data on a File on
the Pico Device

• Then we will copy the File to our PC and are then
ready to do some Data Analysis

• Finally, we will create a simple Python Script that
opens the File and Plot the Data. Here we will
use ordinary Python and the matplotlib

from machine import Pin, I2C
from time import sleep

#I2C Initialization
tc74address = 0x48
i2c_interface = 0
sdapin = Pin(16); sclpin = Pin(17)
i2c =I2C(i2c_interface, scl=sclpin, sda=sdapin, freq=100000)

Open File
file = open("tempdata.txt", "w")

Write Data to File Function
def writefiledata(t, x):

time = str(t)
value = str(round(x, 2))
file.write(time + "\t" + value)
file.write("\n")

k = 0
Ts = 5
while True:

data = i2c.readfrom(tc74address, 1, True)
temp = int.from_bytes(data, "big")
print(temp)
writefiledata(k*Ts, temp)
k = k + 1
sleep(Ts)

Data Analysis

• The File is now copied to our PC and we
are then ready to do some Data Analysis
• We will create a simple Python Script

that opens the File and Plot the Data.
Here we will use ordinary Python and the
matplotlib

Data Analysis Example
import matplotlib.pyplot as plt

Open File
f = open("tempdata.txt", "r")

Transform File Data into x Array and y Array that can be used for plotting
x = []
y = []
k = 0
for record in f:

record = record.replace("\n", "")
record = record.split("\t")
x.append(int(record[0]))
y.append(int(record[1]))
k=k+1

f.close()

plt.plot(x,y, '-o')
plt.title('Temperature Data from TC74 Sensor')
plt.xlabel('Time[s]')
plt.ylabel('Temperature[°C]')
plt.grid()
plt.show()

Data Analysis

• Raspberry Pi Pico:
https://www.raspberrypi.com/products/raspberry-pi-pico/

• Raspberry Pi Foundation:
https://projects.raspberrypi.org/en/projects?hardware[]=pico

• Getting Started with Pico:
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico

• MicroPython:
https://docs.micropython.org/en/latest/index.html

Raspberry Pi Pico Resources

https://www.raspberrypi.com/products/raspberry-pi-pico/
https://projects.raspberrypi.org/en/projects?hardware%5b%5d=pico
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico
https://docs.micropython.org/en/latest/index.html

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

